Monday-Wednesday (CORE)/Friday (AP)

11:00a-12:30; ET/8:00a-9:30a PT

Frequently Asked Questions about this course

You should have completed a junior high school level course in physical science that covers the description of atomic structure (electrons, protons, neutrns), changes of state from solid to liquid to gas, heat energy, and basics of chemical reactions (reactants in, products out). We cover all of these topics in detail, and students have an easier time if they have been exposed to the basic concepts before starting my course. If you have taken the Scholars Online Natural Science course (both years), the summer *Chemistry of the Candle Course*, or a full year Physical Science component of a comprehensive junior high school science curriculum, you should be prepared to handle these chemistry concepts.

You should have completed a first year algebra course and a geometry course or their equivalents, and be starting a second year algebra course that includes linear graphing and analysis.

Our textbook has appendices which cover the basic ideas required for problem-solving in this course, and when you get your copy, you need to read through this carefully, identify the areas where the material is new (or where you feel your command is weak), and do some serious review. But it is helpful if you can do the following, or are learning how to apply these techniques:

- You should be able to factor algebraic expressions and be able to solve
**the quadratic equation**. For example, you should be able to rearrange the equation ax^{2}+ bx + c = 0 for x in terms of a, b, and c [where the solution, if you can't get it any other way, is x = (-b ± √(b^{2}- 4ac))/2a ] - You should be able to work with exponents; it is an advantage to already understand how logarithms work, but we will cover those in class anyway.
- You should know how to work general area and volume equations like
- circumference of a circle = π * 2 * radius = diameter * π
- area = π * r
^{2} - volume of sphere = (4 * π * r
^{3})/3[π is "pi", a value approxiately equal to 3.14159....]

- You should understand how to read a graph and a table of numerical data. Many of the exercises involve interpreting experimental data presented in table form.

This is hard to answer without knowing how fast you read technical subject matter and can work through examples in the text. For **each** CORE chat session, you will need to

- read 10-20 pages of text, many of which will include examples of problem solving involving math that you will need to study carefully
- watch one or more of the recommended videos (usually 5-10 minute shorts on a specific topic)
- complete 5-8 homework exercises
- prepare a homework exercise with explanations and post it to the course website
- review and rework missed problems

My experience is that this will take you 3-4 hours to finish properly. In addition, for each chapter (usually one chapter every two weeks, but with some short chapters, we will do one per week), you will need to finish

- a 20-30 question on-line quiz at the website (15-20 minutes)

Lab work will involve another 1-2 hours per week of your time, depending on what equipment you need to build or collect, in order to complete 11 required labs for the Core Course. You will need to prepare a lab proposal, then carry out your lab, analyze your data, discuss any issues, repeat your labwork if needed, and write up your report.

So each week, you should plan to spend 3 hours in class, 5 hours in preparation, 1 hour in review and testing, and 1 hours in lab execution or reporting, or about 10 hours a week. A normal high school course requires a minimum of 4 hours of class time, 1-2 hours of lab time, and 4 hours of homework.

If you plan to take the AP option, you will spend an additional 90 minutes in class; your lab work will be more intensive (and you will need to do 18 labs altogether), and you will have an addition 1-2 hours of homework, for a total of about 15 hours per week.

My examinations tend to be very thorough, since I am interested in assessing what you have actually learned and understand. The tests are written as though you were a college student (because that is the level of the material we cover), and so are more challenging that a high school physics test would be. Because of this, I will "normalize" your grade so that it maps to high-school level course expectations for a science taken by someone at your current grade level. Normalized scores follow standard interpretations: above 90% = A, 80-89% = B, 70-79% = C, 60-69% D (passing). Scores in the past have ranged from just below 50% to above 95%. However, if you aim to take either the SAT II physics exam or the Advanced Placement exam, you should aim to get at least 85% regularly on the online quizzes and at least 80% on the semester exams. The best preparation for achieving this is disciplined completion of the homework problems, so that during an examination, you can complete most of the problems in the alloted time.

I send email evaluations at the end of each semester that describe your performance on quizzes, homework, class participation, and the term examination. A short summary of this report is included in your formal transcript "comments" section.

Your overall grade is generally a composite. The exact percentages vary from year to year depending but in general:

- Exams are averaged and weighted to contribute 60% to your grade.
- Mastery exercises, individual problems, and quiz averages are about 35% of your grade.
- Class participation is 5% of your grade.

In other words, you could still do well in the course even with low examination scores if your weekly work shows that you are mastering the material at a steady pace. Failing to complete homework or take the quizzes seriously, however, will also knock your grade down a significant amount.

Lab work is graded separately and determines whether you get Honors or AP credit for the course.

Because some government agencies, accrediting institutions, and scholarship committees require more standardized grades, I also issue a numerical score for your work, which is normalized so that it fits the grading scale used by most high schools in evaluating passing, above average, and exceptional work at the freshman, sophomore, junior, and senior levels. Your transcript will include instructions on translating a numerical grade to a letter grade. Many Scholars Online students have been accepted to nationally-recognized, competative colleges and universities, and have received scholarships based on these evaluations.

However, the best way to establish your competence in physics for college admission or placement is to take the SAT II Physics exam, the ACT science exam.

Most students in Scholars Online chemistry are upper division students with some experience in the sciences already, and are forming their post-high school education plans. Many of them take standardized tests, but since homeschooled students receive their scores directly from the testing agency, I do not know all the results for all of my students who have taken the chemistry exams. Some students have reported scores on the SAT II between 630 and 750, and ACT scores in the high 20s and 30s.

Yes. Because of the material we need to cover, the class must meet twice a week. All students must attend all discussions or make alternate arrangements to submit homework assigned. If you are taking the AP option, you must meet three times a week to cover all the material we must discuss.

If you have a conflict with the scheduled sessions, you will need to review your priorities and decide whether or not you can commit to the class. If your outside conflict is short term, I will work with you through the period, but you must plan to attend most of the year's sessions.

Yes, I do write letters of recommendation for students. However, I cannot write such a letter on the basis of a few months' work. I require that you finish a complete year of instruction with me first, so that I have a basis for making an evaluation that reflects your true strengths and weaknesses. If this is your first Scholars Online class with me, I will not be able to write a letter during the fall semester. For more details, see my Letters of Recommendation FAQ.

Students taking the AP Option will have an additional chat session (90 minutes), additional homework and quizzes to cover material not emphasized in the Core Course, and additional lab work, for a total of 4-6 hours a week. *Note that all AP option students must be enrolled in the Core course as well. AP work is in addition to and builds on the materials presented in the Core corse.*.

The eleven Core Course labs are designed to be done with minimal equipment. The eighteen required AP labs are designed to meet AP standards for college-level labs and require much more thought, as well as more investment in equipment and time.

AP credit can be granted only when a course meets AP review board standards which require the material be taught at a first-year college level. The Scholars Online Chemistry Course (Core + AP Option) taken together has been formally reviewed by the College Board and meets all the syllabus requirements, so Scholars Online is authorized to grant AP credit for students who successfully complete the combined course. This is especially important in science courses, where simply scoring well on the AP examination is often not considered sufficient evidence of college-level laboratory skills. Students are more likely to receive college credit and be allowed to take advanced science courses as freshman if they have both scored well on the AP exam and successfuly completed an AP course with its college level lab component.

If you complete more than half the work required for the AP option at a satisfactory level, but do not complete the minimum work required for AP credit, you will receive honors credit for the combined course in recognition of your addtional work.

© 2005 - 2018 This course is offered through Scholars Online, a non-profit organization supporting classical Christian education through online courses. Permission to copy course content (lessons and labs) for personal study is granted to students currently or formerly enrolled in the course through Scholars Online. Reproduction for any other purpose, without the express written consent of the author, is prohibited.