Course Icon


Chat times for 2023-2024
11:00a-12:30p ET/8:00a-9:30a PT

Dr. Christe Ann McMenomy

SO Icon

Student Guide

Student Survival Guide for Scholars Online Biology Course

How to survive a science course, with special attention to the problems of studying physics

Why Study Science?

At the heart of all science is something called the scientific method. The simple version of the scientific method is based on the idea that the objective reality of the universe can be determined by carefully observing phenomena, recording appropriate measurements, then studying the data from these observations for patterns that can be used to describe the general behavior of classes of natural objects. When we can control the circumstances of the observations, we are performing experiments, but often we cannot control all the factors before we make observations. There are scientists who believe that the only valid scientific data is that which comes from controlled experiments; in their view, most of astronomy, meteorology, geology, and many parts of biology are not rigorously scientific. For biology, we use a somewhat looser definition of valid scientific observation that accepts carefully recorded, repeated observations of natural phenomena, especially when observing interactions of species in the wild, or the development of learned behavior.

The Science Course Online

Science classes are frightening for many students. They anticipate difficulties with the concepts, with the details, and especially with the math. But science is just one way of thinking about the natural world around us, and anyone can learn to think like a scientist. Don't waste energy worrying about your ability to learn the material; use your energy to learn it! Once you get the hang of it, you'll be able to discover, understand, and appreciate the complexity of God's creation better. You will also be better prepared to take your place as a steward of that creation.

Review the prerequisites for the course. These are the concepts and math skills that you should have mastered in order to succeed in learning the material. The math prerequisites for this course are described in the course overview page and the FAQs page. If you have any questions about your readiness for the course, be sure to ask for help during our first session. I will arrange to work with you so that you can gain the required skills quickly.

Every science course has as its main components lectures, reading assignments, labs, and lots of homework to prepare you for taking quizzes and exams. In addition to these, our online course has this website, the Moodle, and e-mail to provide the functions that would normally exist in talking to your teacher face-to-face, or looking at a bulletin board or whiteboard. Keeping track of all the components can be a daunting task, especially at first, so plan to spend some time becoming familiar with the course website, your text, and the Moodle. Once you have mastered the mechanics of using these tools, you can concentrate on learning the material that they contain.

Why are there so many parts to the course? Well, part of the reason is that you learn in many ways. You memorize facts, you comprehend relationships, and eventually, you understand concepts. You learn by reading, by analyzing pictures and graphs, by watching demonstrations of processes, by participating in discussions, and by applying what you are learning to specific situations in the homework and labs. You "cement" what you've learned by teaching others. The organization and materials of the course require that you take all these approaches.

Managing Your Time

Make the commitment, now, to spend adequate time on coursework. This course will challenge you mathematically as well as conceptually, so you must realize right from the start that you cannot do all the work for a given unit on one day ... and you shouldn't do it just before chat session! The table below is a rough guide and a suggested pace for this course. The amount of time you spend on each part of the assigned work will vary greatly from student to student, and your schedule will of course depend on your other commitments. Work out a reasonable work load and stick to it!

Try to do your reading as early as possible. This allows you to think about the questions and material, review it in your mind, and absorb it more critically.

Checklist and schedule

Completed? Task Approximate Time Scheduled for...
1 _____ Check Moodle for instructions for next chat session 15 minutes Immediately after each class session
2 _____ Read Next Web Lecture 1/2-1 hour Monday/Wednesday after chat
3 _____ Read Text Assignment (and work through example problems or questions!) 1-2 hours Monday/Wednesday after chat
4 _____ Work through plantarium exercises [Astro], watch videos [Chem], perform Lessons (if any) or simulations [Phys] 1-2 hour Tuesday/Thursday
5 _____ Complete Mastery Exercises 1-2 hours Tuesday/Thursday (Sat)
6 _____ Complete individual problem and post solution to Moodle 1/2 hour Before chat when due
7 _____ Complete AP example (AP option students only) 1-2 hours Thursday (due Friday)
8 _____ Attend Chat and ASK QUESTIONS 1.5 hours Chat Schedule
8 _____ Plan and perform for lab 1-2 hours Tues
9 _____ Perform calculations/reduce data 1 hour Two days before lab due
10 _____ Write lab report 1 hour Day before lab due
11 _____ Take Moodle quiz 20-30 minutes (only at the end of the chapter)

Web Lectures

Rather than take our precious chat time by lecturing to you, all unit lectures are posted to the site. You need to read these as well as the text. The Homework and Weblecture pages between them have

The "checkpoint" exercises ask you to figure something out, then offer you the opportunity to check your answer. Try to figure things out before hitting the "answer" button! If you were correct, and your reasoning was correct, congratulations! You are ready to continue with the next concept. If you missed the answer, but understand the correction, make a note to review the concept later. If you don't understand the explanation, ask the teacher during class, or send e-mail requesting further help.

As you read the web lecture, make notes on anything that puzzles you, and be sure to raise your questions in class.

Getting to Know the Textbook

Examine your copy of Biology: Concepts and Connections (Reece, Taylor, et. al, ed. 8) as soon as it arrives. Read through the preface and note the use of "Big Ideas: this terminology is from the AP Curriculum definitions, and is used in a number of texbooks now.

It is important to understand what agendas your authors have — even the most ideologically objective author has some agenda by which he chooses what to include and how to organize his material. Knowing the authors' material and teaching agendas swill help you learn and organize the material they present and make the most of the learning tools they have incorporated into the text.

One of the material agendas the authors adopt is to help students acquire a framework of key biological concepts into which they can fit practical consequences (connections). A conceptual framework is like the structure of a house. You can populate the house with any ideas which will fit in the existing rooms. When the idea doesn't fit, it is rejected as incompatible with the basic framework. In science, it is never enough to just collect observations. A scientist must organize and explain the observations, find cause and effect relationships, predict future events, and even account for observations made after theory formation. When a science has a dominant theory such as relativity, quantum mechanics, or evolution in place, the first effort with any new data is to try to fit it into the dominant theory, into the conceptual framework.

The current conceptual framework four modern biology is based on four ideas:

Most biologists believe that the theory of evolution can account for more observations than any other proposed scientific theory. Understanding the theory of evolution is necessary to understanding how most biologists currently organize and interpret information and evaluate competing theories. Any proposed theory must provide an equally useful conceptual framework as well as accounting for the observable phenomena.

One of the authors' teaching agendas is to use good graphics to help you understand the material. Many people learn more easily from pictures than from words, and most people learn from both. So don't ignore the pictures — sometimes there is more information in the diagrams than there is in the text!

Study the table of contents and note the organization of material. We are going to start with cell theory, since cell structure is common to all forms of life. Then we talk about inheritance — how DNA and RNA are used to pass information from generation to generation and cell to cell. Most of the information presented in these two units is less than a hundred years old. Then we discuss the basic theory of evolution and how it is used to explain the fossil evidence for plants and animals that no longer exist, as well as the current diversity of species and their distribution throughout the world. In the spring semester we will study the different systems found in complex animals, such as the nervous system and the circulatory system. We then look at systems in plants, in order to describe how they grow and reproduce. Finally, we look at organisms in situ, that is, at life forms as they co-exist in nature. Notice that we move from the microscopic structures found in almost all life forms to the individual habitats of particular animals and plants.

Much of the effort in biology has gone into naming organisms, parts of organisms, and the processes of life and relationships between organisms. It is essential that you learn all these terms in order to understand and master the material. Make a list of the bold-faced terms in the chapter, and drill yourself on terminology regularly. Check your definitions with the glossary in the back of the book.

Each topic is discussed in a numbered chapter module that ends with a question. Be sure that you can answer the question before going on to the next module. At the end of each chapter are multiple choice questions on the material in the current chapter. I will not specifically assign or collect your answers to these textbook multiple choice questions, but I urge you to look through them rapidly to test your comprehension after you first read the chapter. Answer all the questions as quickly as you can, then check your answers in the back of the textbook, and if you get any of the questions wrong, review the material before continuing with the study guide exercises.

I will be using the essay topics in the chapter review sections at the end of each chapter of the chapter for your essays and as a guide for discussion. You may be assigned to write on one question from these, or on a similar topic, and present your answer in class each week. You should read through all the topics, not just the ones assigned, so that you understand the essays presented by other students.

As you plan your reading, be sure that you give yourself enough time to

Doing Homework

Homework is not merely useful, it is essential for mastering the concepts of any science course. Just as we test theories by applying them to experimental situations, you test your understanding by applying it to specific situations. You will know whether you understand a concept if you can use it to solve a "real-world" problem, and when you can teach it to someone else.

You will be assigned word-essay questions, observational data analysis, and calculation problems for each unit as part of a forum, mastery exercise, or lesson found in the Moodle section for the week. Moodle lessons may present new information not covered in detail in your text, and test your comprehension of this material. Mastery exercises will test your understanding of terminology and your ability to distinguish closely related concepts and apply them correctly to examples. You may be asked to identify components of a system by matching terminology, labelling diagrams, or completing a crossword-puzzle challenge. Some examples will ask you to perform basic tasks several times in different ways to make sure that you understand how to apply them. You may be led step-by-step through a complex calculation, then asked to calculate a similar example on your own. Follow any directions to express your answer in a particular format so that it will be correctly scored! Study exercise feedback even if you got the right answer, so that you can use the method or information in other situations.

You will also be asked to post the answer for at least one question or essay topic to a Moodle forum shared by your fellow students for discussion. If the question involves calculation, you will need to show your calculations and explain them in your posted answer. This is your opportunity to explain to your fellow students what you know — to teach the idea to someone else.

Your reading assignment will be on both the Moodle and the Schedule page, along with links to my Web lecture and study notes for the assignment. You are expected to do any online exercises, watch any videos, and complete any tutorials assoicated with the reading that are assigned in the homework page or weblecture. Questions based on this material may be included in your mastery exercises, individually-assigned problems, or quizzes.

NB: mycroft, the original bot for my science classes, has long since been freed to do other things, like attend class, make obnoxious remarks, and aid stumped students. If you really get stuck figuring out the problem you've been asked to post, mycroft has been known to accept bribes in the form of virtual Oreo cookies to finish your problem for you.

Essay Questions

Essay questions ask you to explain a concept in words. As you answer a science essay question, be prepared to cite calculation information as well as concepts, or give examples.

Here is an example: What are the advantages of breathing air, rather than absorbing oxygen from water? What are the disadvantages?

A good answer will be grammatically and syntactically correct, using proper English, as well as contain the correct information. It will cover more than one point in supporting its argument.

Oxygen is present in far less concentration in water than in air, so aquatic animals must work harder to extract the oxygen required for metabolic functions from water than land animals must work to extract the same amount of oxygen from air. However, not all the advantages are with the land animals, which must struggle to maintain adequate water internally against their dryer environment.

Doing Math Questions

The text includes a number of questions that ask you to think about different situations the way a scientist would. They may ask you how you would create an experiment to test for or gather information about a given area. Often they present the results of a particular research project or experiment, and ask you to analyze the results. While you may not actually need to "do math" calculations to come up with the answer, you sometimes need to "think mathematicallly", looking at a set of numbers for trends or similar patterns. Don't panic on these! Spend the time to visualize the information. Draw a chart of the numbers, if you think it will help you see trends. And always, ask questions in class if you don't understand the point of the question or its answer.

Getting the Most from Chat

During our weekly meeting, we will base our discussion on the material in our textbook. We will also discuss demonstrations found on the web or in our Moodle, websites of related interest, homework problems, and any observations that you make during the week.

If you come to chat without any questions, you aren't paying enough attention to the material!

You may raise questions about the material from the text, my web lectures, your homework, your labs, and when we have time, from news media articles with a biology connection, such as the discovery of a new species, advances in genetic engineering, or environmental concenrs. I realize that there are diverging scientific, philosophical, and theological opinions on much of the material that we cover, particularly on the evolution.

You may challenge any statement made in class or in your text, as long as you do so politely. You do not have to agree with all of the tenets proposed by your textbook authors, your teacher, or your fellow classmates, but you should be able to clearly state their arguments in terms they would accept, and address your concerns to those positions. Act with respect to each proponent and assume that each is trying to make the best sense of the universe.

I do consider your contributions to our discussion in determining your final grade and making comments, so don't just sit back and watch others type. If you have questions, ask them! When you are assigned a report topic or a homework problem to post, be sure that you have spent adequate time to prepare not only the formal content that you post to the class forum in the Moodle, but also to anticipate the questions of your fellow students about your topic.

Chat sessions are 90 minutes. Plan accordingly, and take a break just before class starts. Do some stretching, go to the bathroom, eat or get your drinks before you enter the classroom. Be sure to try to connect to your ISP and check mail 10 minutes before class if possible, in case any late notices have been sent by the teacher. Give yourself the extra time. High traffic on your ISP or the school server can slow you down and force you to miss the first 5 to 10 minutes of class.

If you have not already done so, post any pre-chat preparation materials, including essays and individually-assigned problems, to the Moodle before chat.

Bring your textbook, notes, homework calculations, calculator, and paper and pencil to class. If you are comfortable using a desktop calculator and taking notes in a text utility like Notepad (available as different applications on both Windows and Macintosh), you can use those. You may also find a dictation program like Dragon helps reduce typing, either into chat or taking notes. Take notes during class. Since Scholars Online logs the chat sessions, you do not need to document things the teacher or other students say, but it is useful to note your own questions and observations as they occur, so that you can study them later.

Take part in the discussion. Ask questions as they occur to you (or note them and ask them at the end of class).

Chat sessions in science subjects frequently involve discussion of mathematical calculations. One convention we use is underscore (_) for subscript and up-arrow (^) for superscript. The term x_1 ^2 means "take the value x-sub-1 and square it". You may be more used to seeing this written as x12, and we can actually do that in Dr. Bruce's chat, but it requires a bit of typing. If you prefer to use HTML tags, then here's a quick guide:

After chat, log into the chat window again, hit the button for past chat logs, and print the log out. As soon as possible after class, review the log and make notes on it about any points that bother you, and be sure to ask about these in our next session. Mark important points for review later. Consult your notes or the Scholars Online copy of the log to review before the next session and before semester examinations


All the examinations (quizzes, midterms, or semester exams) which I use to evaluate your understanding and progress in the course will be based on the mastery exercises and individually-assigned problems draw from the text. It is therefore very important that you complete your homework assignments, study questions, and any reports assigned to prepare for the exams for this course.

There will be an online quiz for each chapter, which will be available on the Moodle when we have finished discussing the material in the chapter. You must complete the mastery exercise with a passing score before you will be allowed to take the quiz. These quizzes include 10-30 multiple choice, short calculation, and other format questions and are timed. When you take the quiz, you will receive immediate feedback for your attempt. You will have a chance to take make up any missed quiz during the grace period before midterm exams.


Start your review two weeks prior to the scheduled examination.

There will be several major exams (midterms), after major sections of the text are completed. These may be mailed electronically to you, or you may take them on the Moodle. Either way, you will need your parent or other responsible adult to act as as proctor. If you take the exam (or part of the exam, such as the multiple choice section) in the Moodle, you will need to complete it before it closes. If I email the exam to you, or if you take the problem section of the exam on paper, you will need to type or scan in your answers to a computer file, and upload the file to the Moodle assignment for that exams before the assignment closes.

Most exams will include a multiple-choice or other format objective section, an essay section, and a problem section, and an "lab" section which involves analysis of observational data. All sections are closed book — you may not refer to a textbook or other resources. For Physics, Chemistry, and Astronomy, you may bring to these exams one 8.5 x 11 inch sheet of paper with whatever notes on it that you desire — so don't worry about memorizing formula. Learn concepts and applications!


Study Groups

Yes, of course you may study together — remember that explaining or teaching what you just learned to someone else is one of the important techniques of learning! You may also work together to solve individually-assigned problems or essay topics, and mastery exercise quetions. Be sure that you can complete all homework assignments on your own afterwards, since you cannot work as a study group on quizzes or examinations. Let me know if you need special chat times for your study group.

Doing Labs: The Scientific Experience

One of the basic methods of science is to secure documented observations of periodic or common events in order to make some general summary about the behavior of natural objects. We can do this in several ways.

Special concerns for Biology Labs

Observing living organisms

Most field observations should be designed to collect information without interfering with normal plant or animal behavior, but this is difficult to achieve in practice. In general, any instruments or human interference required to gather and record data requires direct contact with animals, making it difficult to eliminate the interference issue.

Observational methods also pose ethical dilemmas which as us to question whether it is right to perform experiments on the subjects, and to what extent certain kinds of experiments, such as injections with chemicals to test reactions, should be permitted. In designing any experiment, you should consider the legal implications and your own moral stand.

Laboratory Experiments

Biology experiments in the lab generally chemical experiments in nature, and chemistry-type experiments, of all the sciences we teach at Scholars Online, pose the most dangers to the students. Glass equipment, sharp edges, open and very hot flams, and chemicals that are able to burn or poison, are all hazards. The safety guide on the Science website provides a general guide, but far better is the safety information in your Illustrated Guide to Home Biology Experiments, and the safety information that comes with the chemicals and equipment that you may purchase. We will spend significant time on safety practices for chemists, and you will need to complete a lab safety quiz before your lab reports will count toward your grade, as well as three "skills and safety" lab exercises.

Writing Lab Reports

Your lab report is the evidence of your observations of a particular phenomena. Your observations should be presented in such a way that the data is easy to understand and supports your conclusions, but also with enough detail on how you obtained them that any peer with similar equipment could repeat your experience and confirm your results (or challenge them, as the case may be).

Organization: A good science lab report has at least seven sections:

  1. The abstract: a short paragraph explaining the goal of the lab, the overall purpose or hypothesis, the type of data gathered, and the conclusions.
    Water samples from seven different sites in the Bellevue area were taken monthly on the 15th day of the month and tested to determine whether seasonal changes occured in levels of nitrates, sulfates, and acids. We expected to find increased levels during the summer months when less rain was available to provide fresh water and solutes would be more concentrated. While nitrate levels decreased during the summer moths, sulfate and acid levels rose, suggesting a more complex cycle dependent on factors other than rain levels.
  2. Materials and equipment: a description of the consumable materials and the observing equipment, instruments used to collect data. For standard equipment, references to the make and model are generally sufficient, along with verification that the equipment was tested for proper calibration.. If the equipment was modified, or specially configured, describe the new settings. If the equipment was specially built, either summarize the intent and purpose of the equipment and methods of calibration, or refer to other documents which provide this information.
    • 50 ml pipet
    • 7 baby food jars, sterilized, with lids
    • labels
    • ion detection sample kit from aquarium supply store for determining levels of nitrite, nitrate, sulfate
    • pH indicator paper with a range from 3 to 9
  3. Procedure: a description of the process (in the case of a complex process, a list of steps) taken to secure the data. This should be detailed enough to allow peers in the field to repeat the measurements you made under simillar circumstances. Any choices you made that might affect results should be stated, along with the reasons you made them.
    Using a pipet, a 25 ml sample was collected and transferred to a sterilized, dry glass jar from six inches below the surface where standing water was at least two feet deep. Every effort was made to avoid scum, insect life, and soil contamination. Because of the distance between source sites, it was not possible to collect all samples at the same time of day, resulting in sources that were at different temperatures.
  4. Raw Data: the numbers you copied from instruments, descriptions of what you saw with your own eys, notes to yourself about odd things that happened, and rough sketches made during the observation. They might also include photographs, data collected by computer, and so forth. In many cases, the amount of data collected this way exceeds the space available in a formal report, so you do not need to include all of it. You should select representative samples of this data, and retain your notebooks with the actual raw data for reference if anyone questions your results.
    TABLE 4: pH readings
    Site Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    1 Larsen Lake 6.7
    2 Phantom Lake 6.9
    3 Sunset Creek 7.0
    4 Kelsey Creek (farm) 7.3
    5 Kelsey Creek (trestle) 6.8
    6 Boeing Pond 7.1
    7 Freeway Pond 6.9
  5. Sample Calculations: at least one each of any calculations you did to determine reliability (statistical analyses) or to figure out derived data (e.g., density from volume and mass measurements). This allows a reviewer (such as your teacher) to determine whether you used the proper technique of data reduction in this situation.
    Average pH in January = sum(6.7, 6.9, 7.0, 7.3,6.8,7.1,6.9)/7 = 6.96 =~ 7.0
  6. Processed Data: all the processed data on which you base your results in the most useful forms. Frequently this involves creating a table, and may additionally involve preparing graphs to show trends.
    Site Average pH Max pH Min pH Average NO3-ppt
    1 Larsen Lake
    2 Phantom Lake
    3 Sunset Creek
    4 Kelsey Creek (farm)
    5 Kelsey Creek (trestle)
    6 Boeing Pond
    7 Freeway Pond
  7. Conclusions: your assessment of whether your originaly hypothesis or assumptions are supported by actual phenomena. If your results did not bear out your assumptions, but you still feel the assumption is correct, you should explain the source of the problem (errors in measurement, calculations, equipment), and outline a plan for redoing the observations. When your experiment bears out your hypothesis, your conclusion should place these results in the context of the large field, and could include suggestions for further research.
    Levels of nitrates rose in winter and fell in summer, as expected, with a maximum in Februray of 22ppt and a mininum in August of 18ppt. However, sulfates and acidity followed the reverse trend, with maxium amounts in February and minimum amounts in August. This suggests that additional rain in the winter months was possibly contaminated with sulfuric acid ("acid rain"), increasing sulfates and the acidity level. Further testing of rain water captured separately from the standing water sources are be necessary to show whether this is the source of the additional sulfate solutes found.

    NOTE that this report makes no mention of a crucial factor: the actual rainfall during the test period. Would you explain the results differently if it had been the dryest February on record and the wettest August? If rainfall was constant throughout the year? If February was wet but August dry?

    Because of the nature of field observations, there are some kinds of data that you should always include for any observing session.

    • Location, local time, date.
    • Weather conditions and climate (normal, dryer/wetter than usual).
    • Unusual behavior of local animals or plants.

Term Papers: The Research Proposal

Part of each semester's assignments is a research paper of 4-7 pages (1000 - 1500 words), written as a research proposal on some specific area of biology, and due at the same time as your semester examination.

You may use any and all resources at your command, including websites, text, other books, magazine articles, etc. You may spend any amount of time on the report that you wish, and you can work on it before and finish it after the exam if you so choose, but it is usually due at the same time as the semester exam.

TOPIC: You may choose a topic from either semester's biology materials, where you can discuss how it is an example of a class of biological objects, what makes the particular object interesting, and how it might be studied. For example, you could choose a cell organelle like ribosomes, a particular gene or genetic defect, or a particular application of evolution theory. You must submit your proposed topic to the teacher and have it approved before continuing your researc.

REPORT FORMAT: The report should include the following sections:

From a grading standpoint, I would like you to show me that you understand something about the general characteristics of one of these areas:

If you chose a particular organelle, for example, you should show how organelles are similar, how they differ and what those differences are based on (e.g, is it on their chemical composition? function? development over time within the organism?), what is particularly interesting about the example you chose, and how to gather scientific data about these objects, analyze them, and draw conclusions from them that tell us about these basic characteristics.

You will upload your paper as to the Moodle assignment location by its due date. It must be in acceptable format (Word DOC (not DOCX), RTF, Ascii text (TXT), PDF, or Mac Pages format). If you use another word processor, please check with me before uploading the file; I may not be able to read it.

Past research topics have included


Planning Field Observations....

Six of the labs are field labs. These are intended to give you some idea of how a biologist conducts studies of living organisms in their native environments. While these labs are not difficult, you will need to plan ahead for them.

The field labs should be conducted in the same area, so that you can compare your observations of populations and communities over time. You will need to select a place that you can visit repeatedly from September through July, and from which you can remove samples of plant and insect life. If at all possible, the area should have a source of standing water which you can use to get protista (single-celled aquatic life forms). It is best if the area is not heavily landscaped or traveled, so try to find a field or woods away from the road in the back corner of your yard, or better, a park.

Be prepared to work around the weather. You may find that you can't observe your area for several weeks at a time because of rain or snow; do something else with that time and take advantage of weather opportunities.

Current Events

The major stories in biology these days tend to focus on genetics, with cloning, use of human tissues for cell replacement, and gene mapping posing stories that both fascinate us and challenge us socially, technically, and ethically. If you find something interesting in the news, be sure to ask about it in class.