Course Icon

Natural Science - Year I

Chat times for 2024-2025
Thursday
1:00p-2:30p ET/10:00a-11:30a PT

Dr. Christe Ann McMenomy

SO Icon

Student Survival Guide for the Natural Science Course - Year One

Student Survival Guide for Scholars Online Natural Science 1 Course

Or:
How to survive a science course, with special attention to the problems of studying physics


Why Study Science?

At the heart of all science is something called the scientific method. The simple version of the scientific method is based on the idea that the objective reality of the universe can be determined by carefully observing phenomena, recording appropriate measurements, then studying the data from these observations for patterns that can be used to describe the general behavior of classes of natural objects. When we can control the circumstances of the observations, we are performing experiments, but often we cannot control all the factors before we make observations. There are scientists who believe that the only valid scientific data is that which comes from controlled experiments; in their view, most of astronomy, meteorology, geology, and many parts of biology are not rigorously scientific.

Since this is a natural science course, in many cases we will be looking at theories formed outside the experimental tradition! One of the things you will need to decide is whether this affects the validity of the theory.

Man's search for patterns led him to keep track of many phenomena from very early in recorded history. Heavier items make a deeper dent in the earth when they impact the surface. Some metals, in chips small enough to float on water, will spin round and orient themselves toward the Pole Star. Water, when it turns to steam, expands (it also expands when it turns to ice!). The planets move in complex patterns that repeat only over long periods of time. Plants and animals have similar structures that may (or may not!) function in similar ways.

When scientists find similarities between objects, or patterns of behavior that repeat with little variation, they want to study the similarities to see if there is some common cause behind them. When the scientist finds a reasonable explanation, he or she proposes a hypothesis, a testable statement about the phenomena. Hypotheses that stand up over many repeated observations are combined to make theories; distillations of theories that have no known exceptions may be called natural laws.

Our expression of physical laws are not immutable, despite the name. As we move through history, we will look at many theories that were considered unshakable physical law, but which were later challenged by new observations. In this course, we will examine not only the theory content but the conditions under which a society accepted or rejected that theory.

Science is a human activity. One of the objectives is to learn as much as possible about the objective universe, the one that exists without our interpretations. As we study science this year, you will want to ask how non-science factors like personal ego, dominant theories, philosophies, and regions, influenced the theories of science.


The Science Course Online

Science classes are frightening for many students. They anticipate difficulties with the concepts, with the details, and especially with the math. But science is just one way of thinking about the natural world around us, and anyone can learn to think like a scientist. Don't waste energy worrying about your ability to learn the material; use your energy to learn it! Once you get the hang of it, you'll be able to discover, understand, and appreciate the complexity of God's creation better. You will also be better prepared to take your place as a steward of that creation.

Review the prerequisites for the course. These are the concepts and math skills that you should have mastered in order to succeed in learning the material. The math prerequisites for this course are described in the course overview page and the FAQs page. If you have any questions about your readiness for the course, be sure to ask for help during our first session. I will arrange to work with you so that you can gain the required skills quickly.

Every science course has as its main components lectures, reading assignments, labs, and lots of homework to prepare you for taking quizzes and exams. In addition to these, our online course has this website, the Moodle, and e-mail to provide the functions that would normally exist in talking to your teacher face-to-face, or looking at a bulletin board or whiteboard. Keeping track of all the components can be a daunting task, especially at first, so plan to spend some time becoming familiar with the course website, your text, and the Moodle. Once you have mastered the mechanics of using these tools, you can concentrate on learning the material that they contain.

Why are there so many parts to the course? Well, part of the reason is that you learn in many ways. You memorize facts, you comprehend relationships, and eventually, you understand concepts. You learn by reading, by analyzing pictures and graphs, by watching demonstrations of processes, by participating in discussions, and by applying what you are learning to specific situations in the homework and labs. You "cement" what you've learned by teaching others. The organization and materials of the course require that you take all these approaches.


Managing Your Time

Make the commitment, now, to spend adequate time on coursework. This course will challenge you mathematically as well as conceptually, so you must realize right from the start that you cannot do all the work for a given unit on one day ... and you shouldn't do it just before chat session! The table below is a rough guide and a suggested pace for this course. The amount of time you spend on each part of the assigned work will vary greatly from student to student, and your schedule will of course depend on your other commitments. Work out a reasonable work load and stick to it!

Try to do your reading as early as possible. This allows you to think about the questions and material, review it in your mind, and absorb it more critically.

This course has a lot of components. Read the Procedures page carefully, so that you understand what will be expected of you in class sessions and as you read and do your mastery exercises. Copy down the checklist of all the components and look at the possible ways you could pace your time, and make your own plan. Stick to it for several weeks, then modify it to suit your own study habits and other commitments. The key to this course really is self-discipline; you will need to determine how much time to spend on memorizing facts, understanding concepts, completing written assignments, and (if you chose the lab option) performing the experiments. There are several proposals for how to pace yourself in the Procedures document; here is another one.

Checklist and schedule

Completed? Task Approximate Time Scheduled for...
1 _____ Check Moodle for instructions for next chat session 15 minutes Immediately after each class session
2 _____ Read Next Web Lecture 1/2-1 hour Wednesday
3 _____ Read Text Assignment (and work through example problems or questions!) 1-2 hours Wednesday
4 _____ Work through plantarium exercises [Astro], watch videos [Chem], perform Lessons (if any) or simulations [Phys] 1-2 hour Friday
5 _____ Complete Mastery Exercises 1-2 hours Friday/Monday
6 _____ Complete individual problem and post solution to Moodle 1/2 hour Before chat when due
8 _____ Attend Chat and ASK QUESTIONS 1.5 hours Chat Schedule
8 _____ Plan and perform for lab 1-2 hours Tues
9 _____ Perform calculations/reduce data 1 hour Two days before lab due
10 _____ Write lab report 1 hour Day before lab due
11 _____ Take Moodle quiz 20-30 minutes (only at the end of the chapter)

Web Lectures

Rather than take our precious chat time by lecturing to you, all unit lectures are posted to the site. You need to read these as well as the text. The Homework and Weblecture pages between them have

The "checkpoint" exercises ask you to figure something out, then offer you the opportunity to check your answer. Try to figure things out before hitting the "answer" button! If you were correct, and your reasoning was correct, congratulations! You are ready to continue with the next concept. If you missed the answer, but understand the correction, make a note to review the concept later. If you don't understand the explanation, ask the teacher during class, or send e-mail requesting further help.

As you read the web lecture, make notes on anything that puzzles you, and be sure to raise your questions in class.


Getting to Know the Textbook

There is no textbook for this course — we do web readings, and our first session will discuss those. Think of the history and science weblectures as your text, and follow the suggestions for reading carefully. If the reading involves interactive activities, spend some time playing with these until you think you understand the concept being demonstrated.

As you plan your reading, be sure that you give yourself enough time to


Doing Homework

Homework is not merely useful, it is essential for mastering the concepts of any science course. Just as we test theories by applying them to experimental situations, you test your understanding by applying it to specific situations. You will know whether you understand a concept if you can use it to solve a "real-world" problem, and when you can teach it to someone else.

You will be assigned word-essay questions, observational data analysis, and calculation problems for each unit as part of a forum, mastery exercise, or lesson found in the Moodle section for the week. Moodle lessons may present new information not covered in detail in your text, and test your comprehension of this material. Mastery exercises will test your understanding of terminology and your ability to distinguish closely related concepts and apply them correctly to examples. You may be asked to identify components of a system by matching terminology, labelling diagrams, or completing a crossword-puzzle challenge. Some examples will ask you to perform basic tasks several times in different ways to make sure that you understand how to apply them. You may be led step-by-step through a complex calculation, then asked to calculate a similar example on your own. Follow any directions to express your answer in a particular format so that it will be correctly scored! Study exercise feedback even if you got the right answer, so that you can use the method or information in other situations.

You will also be asked to post the answer for at least one question or essay topic to a Moodle forum shared by your fellow students for discussion. If the question involves calculation, you will need to show your calculations and explain them in your posted answer. This is your opportunity to explain to your fellow students what you know — to teach the idea to someone else.

Your reading assignment will be on both the Moodle and the Schedule page, along with links to my Web lecture and study notes for the assignment. You are expected to do any online exercises, watch any videos, and complete any tutorials assoicated with the reading that are assigned in the homework page or weblecture. Questions based on this material may be included in your mastery exercises, individually-assigned problems, or quizzes.

NB: mycroft, the original bot for my science classes, has long since been freed to do other things, like attend class, make obnoxious remarks, and aid stumped students. If you really get stuck figuring out the problem you've been asked to post, mycroft has been known to accept bribes in the form of virtual Oreo cookies to finish your problem for you.


Essay Questions

Essay questions ask you to explain a concept in words. As you answer a science essay question, be prepared to cite calculation information as well as concepts, or give examples.

Here is an example: Why is written language important for the practice of science?

A good answer will be grammatically and syntactically correct, using proper English, as well as contain the correct information. It will cover more than one point in supporting its argument.

Accurate records are important since philosophers and scientists need to compare observations taken at different times and in different places. Simply recollecting what happened from memory may not be accurate enough to discover subtle differences that lead to discoveries.

Doing Math Questions

We have very few mathematical calculations for this course, and the mastery exercises will walk you through any calculations one step at a time. Let the teacher know if you have not yet had any algebra, so that we can spend some time explaining how — and why — we rely on mathematical formulae so much in describing natural phenomena.


Getting the Most from Chat

During our weekly meeting, we will base our discussion on the material in our textbook. We will also discuss demonstrations found on the web or in our Moodle, websites of related interest, homework problems, and any observations that you make during the week.

If you come to chat without any questions, you aren't paying enough attention to the material!

You may raise questions about the material from the text, my web lectures, your homework, your labs, and when we have time, from news media articles with any science connection, such as the discovery of gravity waves, global warming, new drug therapies, approaching comets, or the development of new materials for electronics. I realize that there are diverging scientific, philosophical, and theological opinions on much of the material that we cover, particularly on the origin of the universe.

You may challenge any statement made in class or in your text, as long as you do so politely. You do not have to agree with all of the tenets proposed by your textbook authors, your teacher, or your fellow classmates, but you should be able to clearly state their arguments in terms they would accept, and address your concerns to those positions. Act with respect to each proponent and assume that each is trying to make the best sense of the universe.

I do consider your contributions to our discussion in determining your final grade and making comments, so don't just sit back and watch others type. If you have questions, ask them! When you are assigned a report topic or a homework problem to post, be sure that you have spent adequate time to prepare not only the formal content that you post to the class forum in the Moodle, but also to anticipate the questions of your fellow students about your topic.

Chat sessions are 90 minutes. Plan accordingly, and take a break just before class starts. Do some stretching, go to the bathroom, eat or get your drinks before you enter the classroom. Be sure to try to connect to your ISP and check mail 10 minutes before class if possible, in case any late notices have been sent by the teacher. Give yourself the extra time. High traffic on your ISP or the school server can slow you down and force you to miss the first 5 to 10 minutes of class.

If you have not already done so, post any pre-chat preparation materials, including essays and individually-assigned problems, to the Moodle before chat.

Bring your textbook, notes, homework calculations, calculator, and paper and pencil to class. If you are comfortable using a desktop calculator and taking notes in a text utility like Notepad (available as different applications on both Windows and Macintosh), you can use those. You may also find a dictation program like Dragon helps reduce typing, either into chat or taking notes. Take notes during class. Since Scholars Online logs the chat sessions, you do not need to document things the teacher or other students say, but it is useful to note your own questions and observations as they occur, so that you can study them later.

Take part in the discussion. Ask questions as they occur to you (or note them and ask them at the end of class).

Chat sessions in science subjects frequently involve discussion of mathematical calculations. One convention we use is underscore (_) for subscript and up-arrow (^) for superscript. The term x_1 ^2 means "take the value x-sub-1 and square it". You may be more used to seeing this written as x12, and we can actually do that in Dr. Bruce's chat, but it requires a bit of typing. If you prefer to use HTML tags, then here's a quick guide:

After chat, log into the chat window again, hit the button for past chat logs, and print the log out. As soon as possible after class, review the log and make notes on it about any points that bother you, and be sure to ask about these in our next session. Mark important points for review later. Consult your notes or the Scholars Online copy of the log to review before the next session and before semester examinations


Quizzes

All the examinations (quizzes, midterms, or semester exams) which I use to evaluate your understanding and progress in the course will be based on the mastery exercises and individually-assigned problems draw from the text. It is therefore very important that you complete your homework assignments, study questions, and any reports assigned to prepare for the exams for this course.

There will be an online quiz for each chapter, which will be available on the Moodle when we have finished discussing the material in the chapter. You must complete the mastery exercise with a passing score before you will be allowed to take the quiz. These quizzes include 10-30 multiple choice, short calculation, and other format questions and are timed. When you take the quiz, you will receive immediate feedback for your attempt. You will have a chance to take make up any missed quiz during the grace period before midterm exams.


Exams

Start your review two weeks prior to the scheduled examination.

There will be several major exams (midterms), after major sections of the text are completed. These may be mailed electronically to you, or you may take them on the Moodle. Either way, you will need your parent or other responsible adult to act as as proctor. If you take the exam (or part of the exam, such as the multiple choice section) in the Moodle, you will need to complete it before it closes. If I email the exam to you, or if you take the problem section of the exam on paper, you will need to type or scan in your answers to a computer file, and upload the file to the Moodle assignment for that exams before the assignment closes.

Most exams will include a multiple-choice or other format objective section, an essay section, and a problem section, and an "lab" section which involves analysis of observational data. All sections are closed book — you may not refer to a textbook or other resources. For Natural Science courses, this means you may not consult the weblectures, logs, previous exams or any other materials during the exam period.


Study Groups

Yes, of course you may study together — remember that explaining or teaching what you just learned to someone else is one of the important techniques of learning! You may also work together to solve individually-assigned problems or essay topics, and mastery exercise quetions. Be sure that you can complete all homework assignments on your own afterwards, since you cannot work as a study group on quizzes or examinations. Let me know if you need special chat times for your study group.


Doing Labs: The Scientific Experience

One of the basic methods of science is to secure documented observations of periodic or common events in order to make some general summary about the behavior of natural objects. We can do this in several ways.


Special concerns for Natural Science Labs

We do a variety of experiments in this course. Chemistry labs (usually second year) pose the most dangers to students, but all labs should be undertaken with an eye to safety. Glass equipment, sharp edges, open and very hot flams, and chemicals that are able to burn or poison, are obvious hazards, but so are infections from mishandling biological specimens, and even astronomical observing has its dangers if you don't pay attention to where you are going in the dark. The safety guide on the Science website provides a general guide, and individual experiments may have further cautions. Pay attention to these!


Writing Lab Reports

Your lab report is the evidence of your observations of a particular phenomena. Your observations should be presented in such a way that the data is easy to understand and supports your conclusions, but also with enough detail on how you obtained them that any peer with similar equipment could repeat your experience and confirm your results (or challenge them, as the case may be).

Organization: A good science lab report has at least seven sections:

  1. The abstract: a short paragraph explaining the goal of the lab, the overall purpose or hypothesis, the type of data gathered, and the conclusions.
  2. Materials and equipment: a description of the consumable materials and the observing equipment, instruments used to collect data. For standard equipment, references to the make and model are generally sufficient, along with verification that the equipment was tested for proper calibration.. If the equipment was modified, or specially configured, describe the new settings. If the equipment was specially built, either summarize the intent and purpose of the equipment and methods of calibration, or refer to other documents which provide this information.
  3. Procedure: a description of the process (in the case of a complex process, a list of steps) taken to secure the data. This should be detailed enough to allow peers in the field to repeat the measurements you made under simillar circumstances. Any choices you made that might affect results should be stated, along with the reasons you made them.
  4. Raw Data: the numbers you copied from instruments, descriptions of what you saw with your own eys, notes to yourself about odd things that happened, and rough sketches made during the observation. They might also include photographs, data collected by computer, and so forth. In many cases, the amount of data collected this way exceeds the space available in a formal report, so you do not need to include all of it. You should select representative samples of this data, and retain your notebooks with the actual raw data for reference if anyone questions your results.
  5. Sample Calculations: at least one each of any calculations you did to determine reliability (statistical analyses) or to figure out derived data (e.g., density from volume and mass measurements). This allows a reviewer (such as your teacher) to determine whether you used the proper technique of data reduction in this situation.
  6. Processed Data: all the processed data on which you base your results in the most useful forms. Frequently this involves creating a table, and may additionally involve preparing graphs to show trends.
  7. Conclusions: your assessment of whether your originaly hypothesis or assumptions are supported by actual phenomena. If your results did not bear out your assumptions, but you still feel the assumption is correct, you should explain the source of the problem (errors in measurement, calculations, equipment), and outline a plan for redoing the observations. When your experiment bears out your hypothesis, your conclusion should place these results in the context of the large field, and could include suggestions for further research.

Resources

Most Units will have links to further reading, interactive activities, simulations, or videos. These have been chosen to give you some exposure to resources for studying science — both learning methods and methods for advancing science itself. These are clearly marked Optional, so you may chose which areas most interest you to investigate.